VICTOR: Validation and inspection of cell type annotation through optimal regression
- bgtaylor1
- Nov 22, 2024
- 1 min read

Date: | 2 September 2024 |
PMID: | |
Category: | N/A |
Authors: | Chia-Jung Chang, Chih-Yuan Hsu, Qi Liu, Yu Shyr |
Abstract: |
|
Single-cell RNA sequencing provides unprecedent opportunities to explore the heterogeneity and dynamics inherent in cellular biology. An essential step in the data analysis involves the automatic annotation of cells. Despite development of numerous tools for automated cell annotation, assessing the reliability of predicted annotations remains challenging, particularly for rare and unknown cell types. Here, we introduce VICTOR: Validation and inspection of cell type annotation through optimal regression. VICTOR aims to gauge the confidence of cell annotations by an elastic-net regularized regression with optimal thresholds. We demonstrated that VICTOR performed well in identifying inaccurate annotations, surpassing existing methods in diagnostic ability across various single-cell datasets, including within-platform, cross-platform, cross-studies, and cross-omics settings.
Acknowledgements:
The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute, or the National Institute of Health.
The Translational and Basic Science Research in Early Lesions (TBEL) Research Consortia is supported and funded by grants from the National Cancer Institute and the National Institutes of Health under the following award numbers:
Project Number: | Awardee Organization |
U54CA274374 | Fred Hutchinson Cancer Center |
U54CA274375 | Houston Methodist Research Institute |
U54CA274370 | Johns Hopkins University |
U54CA274371 | UT MD Anderson Cancer Center |
U54CA274367 | Vanderbilt University Medical Center |
Comments